资源类型

期刊论文 786

会议视频 32

年份

2024 1

2023 47

2022 92

2021 63

2020 57

2019 47

2018 37

2017 56

2016 29

2015 36

2014 35

2013 31

2012 28

2011 27

2010 24

2009 35

2008 34

2007 50

2006 24

2005 14

展开 ︾

关键词

仿真 7

农业科学 6

质量控制 6

控制 5

智能控制 4

能源 4

主动控制 3

模糊控制 3

环境 3

神经网络 3

自适应控制 3

解耦控制 3

风险控制 3

2021全球十大工程成就 2

2022全球工程前沿 2

三峡升船机 2

三峡工程 2

不确定性 2

中药 2

展开 ︾

检索范围:

排序: 展示方式:

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 271-284 doi: 10.1007/s11465-020-0623-1

摘要: Legged robots have potential advantages in mobility compared with wheeled robots in outdoor environments. The knowledge of various ground properties and adaptive locomotion based on different surface materials plays an important role in improving the stability of legged robots. A terrain classification and adaptive locomotion method for a hexapod robot named Qingzhui is proposed in this paper. First, a force-based terrain classification method is suggested. Ground contact force is calculated by collecting joint torques and inertial measurement unit information. Ground substrates are classified with the feature vector extracted from the collected data using the support vector machine algorithm. Then, an adaptive locomotion on different ground properties is proposed. The dynamic alternating tripod trotting gait is developed to control the robot, and the parameters of active compliance control change with the terrain. Finally, the method is integrated on a hexapod robot and tested by real experiments. Our method is shown effective for the hexapod robot to walk on concrete, wood, grass, and foam. The strategies and experimental results can be a valuable reference for other legged robots applied in outdoor environments.

关键词: terrain classification     hexapod robot     legged robot     adaptive locomotion     gait control    

Footholds optimization for legged robots walking on complex terrain

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0742-y

摘要: This paper proposes a novel continuous footholds optimization method for legged robots to expand their walking ability on complex terrains. The algorithm can efficiently run onboard and online by using terrain perception information to protect the robot against slipping or tripping on the edge of obstacles, and to improve its stability and safety when walking on complex terrain. By relying on the depth camera installed on the robot and obtaining the terrain heightmap, the algorithm converts the discrete grid heightmap into a continuous costmap. Then, it constructs an optimization function combined with the robot’s state information to select the next footholds and generate the motion trajectory to control the robot’s locomotion. Compared with most existing footholds selection algorithms that rely on discrete enumeration search, as far as we know, the proposed algorithm is the first to use a continuous optimization method. We successfully implemented the algorithm on a hexapod robot, and verified its feasibility in a walking experiment on a complex terrain.

关键词: footholds optimization     legged robot     complex terrain adapting     hexapod robot     locomotion control    

Design and locomotion analysis of two kinds of rolling expandable mobile linkages with a single degree

Yanlin HAO, Yaobin TIAN, Jianxu WU, Yezhuo LI, Yan-An YAO

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 365-373 doi: 10.1007/s11465-020-0585-3

摘要: This study presents two kinds of rolling robots that are able to roll by deforming their outer shapes with a single degree of freedom. Each robot is an essential multi-loop planar expandable linkage constructed by a concave outer loop and several inner parallelogram loops. In this study, the mechanical design of the robots is introduced. Dynamic rolling process is further analyzed on the basis of zero moment point method, and a morphing strategy is proposed to guarantee a stable dynamic rolling process. A novel passive rolling locomotion is also developed, which enables the robots to roll and stand on a slope. To verify the design, two prototypes are manufactured, wherein the dynamic and passive rolling locomotion are carried out.

关键词: rolling locomotion     expandable mechanism     mechanism design     zero moment point (ZMP) analysis    

Untethered quadrupedal hopping and bounding on a trampoline

Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 181-192 doi: 10.1007/s11465-019-0559-5

摘要: For quadruped robots with springy legs, a successful jump usually requires both suitable elastic parts and well-designed control algorithms. However, these two problems are mutually restricted and hard to solve at the same time. In this study, we attempt to solve the problem of controller design with the help of a robot without any elastic mounted parts, in which the untethered robot is made to jump on a trampoline. The differences between jumping on hard surfaces with springy legs and jumping on springy surfaces with rigid legs are briefly discussed. An intuitive control law is proposed to balance foot contact forces; in this manner, excessive pitch oscillation during hopping or bounding can be avoided. Hopping height is controlled by tuning the time delay of the leg stretch. Together with other motion generators based on kinematic law, the robot can perform translational and rotational movements while hopping or bounding on the trampoline. Experiments are conducted to validate the effectiveness of the proposed control framework.

关键词: hopping and bounding gait     compliant mechanism     compliant contact     balance control strategy     legged locomotion control     quadruped robot    

Design of a cyclic inhibitory CPG controller for the locomotion of a snakelike robot

LU Zhen-li, MA Shu-gen, LI Bin, WANG Yue-chao

《机械工程前沿(英文)》 2006年 第1卷 第4期   页码 396-402 doi: 10.1007/s11465-006-0046-7

摘要: The rhythmic locomotion of a creature is a self-excitation behavior of the CPG (central pattern generator), which makes it supremely adapted for environment. Based on this fact, firstly, a snake-ike robot controller with cyclic inhibitory CPG model was designed, and then the stability of a single neuron, CPG model and the NON ( neuron oscillator network) was analyzed. By implementing this control architecture to a simulator based on the mechanical dynamics of a real snake-like robot named Perambulator-I, we presented preliminary rules for parameter setting of the CPG controller to modulate the number of S shapes, the curve of the body shape, locomotion velocity, and the curve of the locomotion trajectory for serpentine locomotion. Moreover, we demonstrated that Perambulator-I can successfully exhibit serpentine locomotion by using the output of the proposed CPG controller. The results of this paper provide a realistic approach for designing an artificial CPG controller.

Contact detection with multi-information fusion for quadruped robot locomotion under unstructured terrain

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0760-4

摘要: Reliable foot-to-ground contact state detection is crucial for the locomotion control of quadruped robots in unstructured environments. To improve the reliability and accuracy of contact detection for quadruped robots, a detection approach based on the probabilistic contact model with multi-information fusion is presented to detect the actual contact states of robotic feet with the ground. Moreover, a relevant control strategy to address unexpected early and delayed contacts is planned. The approach combines the internal state information of the robot with the measurements from external sensors mounted on the legs and feet of the prototype. The overall contact states are obtained by the classification of the model-based predicted probabilities. The control strategy for unexpected foot-to-ground contacts can correct the control actions of each leg of the robot to traverse cluttered environments by changing the contact state. The probabilistic model parameters are determined by testing on the single-leg experimental platform. The experiments are conducted on the experimental prototype, and results validate the contact detection and control strategy for unexpected contacts in unstructured terrains during walking and trotting. Compared with the body orientation under the time-based control method regardless of terrain, the root mean square errors of roll, pitch, and yaw respectively decreased by 60.07%, 54.73%, and 64.50% during walking and 73.40%, 61.49%, and 61.48% during trotting.

关键词: multi-information fusion     contact detection     quadruped robot     probabilistic contact model     unstructured terrain    

An experimental analysis of human straight walking

Tao LI, Marco CECCARELLI

《机械工程前沿(英文)》 2013年 第8卷 第1期   页码 95-103 doi: 10.1007/s11465-013-0357-4

摘要:

In this paper, an experimental analysis of human straight walking has been presented. Experiments on human walking were carried out by using Cassino tracking system which is a passive cable-based measuring system. This system is adopted because it is capable of both pose and wrench measurements with fairly simple monitoring of operation. By using experimental results, trajectories of a human limb extremity and its posture have been analyzed; forces that are exerted against cables by the limb of a person under test have been measured by force sensors as well. Furthermore, by using experimental tests, modeling and characterization of the human straight walking gait have been proposed.

关键词: human locomotion     walking gait     characterization     humanoid robot     biped robot    

An autonomous miniature wheeled robot based on visual feedback control

CHEN Haichu

《机械工程前沿(英文)》 2007年 第2卷 第2期   页码 197-200 doi: 10.1007/s11465-007-0033-7

摘要: Using two micro-motors, a novel omni-direction miniature wheeled robot is designed on the basis of the bi-corner driving principle. The robot takes advantage of the Bluetooth technology to wirelessly transmit data at a short distance. Its position and omni-direction motion are precise. A Charge Coupled Device (CCD) camera is used for measuring and for visual navi gation. A control system is developed. The precision of the position is 0.5 mm, the resolution is about 0.05 mm, and the maximum velocity is about 52 mm/s. The visual navigation and control system allow the robot to navigate and track the target and to accomplish autonomous locomotion.

关键词: measuring     distance     autonomous locomotion     advantage     navigation    

WHEAT STRIPE RUST AND INTEGRATION OF SUSTAINABLE CONTROL STRATEGIES IN CHINA

《农业科学与工程前沿(英文)》 2022年 第9卷 第1期   页码 37-51 doi: 10.15302/J-FASE-2021405

摘要:

Stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici occurs in almost all wheat-producing regions of the world. Severe countrywide epidemics in China have caused substantial yield losses. Growing resistant cultivars is the best strategy to control this disease but the pathogen can overcome resistance in wheat cultivars. The high variation in the virulence of the pathogen combined with the large areas of susceptible wheat cultivars enables the pathogen population to increase rapidly and disperse over long distances under favorable environmental conditions, resulting in severe pandemics within cropping seasons. Current stripe rust control measures are based on many years of research including the underlying epidemiology regarding year-to-year survival of the pathogen, pathways of pathogen dispersal within seasons and years, the role of P. striiformis sexual hybridization, the use of resistance sources in breeding programs, and year-round surveillance of national wheat crops that are present in different parts of the country throughout the year. All these strategies depend on accurate prediction of epidemics, more precise use of fungicides to meet national requirements and better deployment of resistance genes. New ideas with potential application in sustainable protection of stripe rust include negative regulatory gene editing, resistance gene overexpression and biological control based on microbiomes.

 

关键词: sustainable disease control / integrated control Puccinia striiformis / Triticum aestivum    

A systematic review of current and emergent manipulator control approaches

Syed Ali AJWAD,Jamshed IQBAL,Muhammad Imran ULLAH,Adeel MEHMOOD

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 198-210 doi: 10.1007/s11465-015-0335-0

摘要:

Pressing demands of productivity and accuracy in today’s robotic applications have highlighted an urge to replace classical control strategies with their modern control counterparts. This recent trend is further justified by the fact that the robotic manipulators have complex nonlinear dynamic structure with uncertain parameters. Highlighting the authors’ research achievements in the domain of manipulator design and control, this paper presents a systematic and comprehensive review of the state-of-the-art control techniques that find enormous potential in controlling manipulators to execute cutting-edge applications. In particular, three kinds of strategies, i.e., intelligent proportional-integral-derivative (PID) scheme, robust control and adaptation based approaches, are reviewed. Future trend in the subject area is commented. Open-source simulators to facilitate controller design are also tabulated. With a comprehensive list of references, it is anticipated that the review will act as a first-hand reference for researchers, engineers and industrial-interns to realize the control laws for multi-degree of freedom (DOF) manipulators.

关键词: robot control     robust and nonlinear control     adaptive control     intelligent control     industrial manipulators     robotic arm    

Emerging contaminant control: From science to action

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-022-1559-y

摘要: Since the concept of emerging contaminants (ECs) was first proposed in 2001, the global scientific research of ECs has developed rapidly. In the past decades, great progress has been achieved in the scientific research of ECs in China, including the establishment of EC analysis method system, the evaluation of the pollution status, pollution characteristics and environmental risk of ECs in typical regions of China, and establishment of EC control technology system. Continuous progress in scientific research of ECs promoted China’s action on EC control. It is planned that the environmental risk of ECs will be generally controlled by 2035 in China. Priority ECs should be screened for environmental management. Although great efforts have been made, the EC control in China still faces tremendous challenges. It is necessary to bridge the gap between scientific research and decision-making management. Based on the science and technology study, various measures such as engineering, policy management and public participation should be combinedly adopted for EC control.

关键词: Emerging contaminants     Priority pollutants     PPCPs     POPs     Control policy    

An integrated approach for machine-learning-based system identification of dynamical systems under control: application towards the model predictive control of a highly nonlinear reactor system

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 237-250 doi: 10.1007/s11705-021-2058-6

摘要: Advanced model-based control strategies, e.g., model predictive control, can offer superior control of key process variables for multiple-input multiple-output systems. The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization. This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control. To showcase this approach, five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system. This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges. These controllers also had reasonable per-iteration times of ca. 0.1 s. This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which, in the face of process uncertainties or modelling limitations, allow rapid and stable control over wider operating ranges.

关键词: nonlinear model predictive control     black-box modeling     continuous-time system identification     machine learning     industrial applications of process control    

Precision control system of two-DOF stage with linear ultrasonic motor

ZHANG Hanlei, SHI Yunlai, ZHAO Chunsheng

《机械工程前沿(英文)》 2008年 第3卷 第4期   页码 421-425 doi: 10.1007/s11465-008-0063-9

摘要: Using an appropriate control method, linear ultrasonic motors can be used in applications requiring high position accuracy. In this paper, a closed loop PI control system is designed to achieve high position accuracy during the control of a two-DOF stage driven by linear ultrasonic motors. Two ultrasonic motors are mounted on the stage to generate motion in two orthogonal directions. The PI control algorithm is used to increase the stability and accuracy of position control. The -axis mover covers 30 mm forward and backward in less than 0.3 s settling time and the -axis mover in less than 0.4 s. Experimental results denote that the control strategy proposed in this paper appears to have high efficiency, quick response, and high accuracy.

关键词: settling     position accuracy     PI control     control algorithm     orthogonal    

A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD

Amir Hossein HEIDARI, Sadegh ETEDALI, Mohamad Reza JAVAHERI-TAFTI

《结构与土木工程前沿(英文)》 2018年 第12卷 第1期   页码 44-57 doi: 10.1007/s11709-016-0382-6

摘要: This paper presents an efficient hybrid control approach through combining the idea of proportional-integral-derivative (PID) controller and linear quadratic regulator (LQR) control algorithm. The proposed LQR-PID controller, while having the advantage of the classical PID controller, is easy to implement in seismic-excited structures. Using an optimization procedure based on a cuckoo search (CS) algorithm, the LQR-PID controller is designed for a seismic- excited structure equipped with an active tuned mass damper (ATMD). Considering four earthquakes, the performance of the proposed LQR-PID controller is evaluated. Then, the results are compared with those given by a LQR controller. The simulation results indicate that the LQR-PID performs better than the LQR controller in reduction of seismic responses of the structure in the terms of displacement and acceleration of stories of the structure.

关键词: seismic control     tuned mass dampers     cuckoo search     PID controller     LQR controller    

Analysis and stabilization control of a voltage source controlled wind farm under weak grid conditions

《能源前沿(英文)》 2022年 第16卷 第6期   页码 943-955 doi: 10.1007/s11708-021-0793-5

摘要: This paper investigates and discusses the interaction stability issues of a wind farm with weak grid connections, where the wind turbines (WTs) are controlled by a new type of converter control strategy referred to as the voltage source (VS) control. The primary intention of the VS control method is to achieve the high-quality inertial response capability of a single WT. However, when it is applied to multiple WTs within a wind farm, its weak-grid performance regarding the stability remains concealed and needs to be clarified. To this end, a frequency domain model of the wind farm under the VS control is first developed. Based on this model and the application of a stability margin quantification index, not only the interactions between the wind farm and the weak grid but also those among WTs will be systematically assessed in this paper. A crucial finding is that the inertial response of VS control has negative impacts on the stability margin of the system, and the dominant instability mode is more related to the interactions among the WTs rather than the typical grid-wind farm interaction. Based on this knowledge, a stabilization control strategy is then proposed, aiming for stability improvements of VS control while fulfilling the demand of inertial responses. Finally, all the results are verified by time-domain simulations in power systems computer aided design/electromagnetic transients including DC(PSCAD/EMTDC).

关键词: weak grids     voltage source (VS) control     wind turbine (WT)     stabilization control     wind farm     inertial response    

标题 作者 时间 类型 操作

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

期刊论文

Footholds optimization for legged robots walking on complex terrain

期刊论文

Design and locomotion analysis of two kinds of rolling expandable mobile linkages with a single degree

Yanlin HAO, Yaobin TIAN, Jianxu WU, Yezhuo LI, Yan-An YAO

期刊论文

Untethered quadrupedal hopping and bounding on a trampoline

Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG

期刊论文

Design of a cyclic inhibitory CPG controller for the locomotion of a snakelike robot

LU Zhen-li, MA Shu-gen, LI Bin, WANG Yue-chao

期刊论文

Contact detection with multi-information fusion for quadruped robot locomotion under unstructured terrain

期刊论文

An experimental analysis of human straight walking

Tao LI, Marco CECCARELLI

期刊论文

An autonomous miniature wheeled robot based on visual feedback control

CHEN Haichu

期刊论文

WHEAT STRIPE RUST AND INTEGRATION OF SUSTAINABLE CONTROL STRATEGIES IN CHINA

期刊论文

A systematic review of current and emergent manipulator control approaches

Syed Ali AJWAD,Jamshed IQBAL,Muhammad Imran ULLAH,Adeel MEHMOOD

期刊论文

Emerging contaminant control: From science to action

期刊论文

An integrated approach for machine-learning-based system identification of dynamical systems under control: application towards the model predictive control of a highly nonlinear reactor system

期刊论文

Precision control system of two-DOF stage with linear ultrasonic motor

ZHANG Hanlei, SHI Yunlai, ZHAO Chunsheng

期刊论文

A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD

Amir Hossein HEIDARI, Sadegh ETEDALI, Mohamad Reza JAVAHERI-TAFTI

期刊论文

Analysis and stabilization control of a voltage source controlled wind farm under weak grid conditions

期刊论文